Аэро-гидропоника

Аэро-гидропоника (часто просто «аэропоника») — один из современных методов культивирования растений, который базируется на оксигенации воды путем прохождения ее через воздух. Для этого есть множество способов с применением воздушных и водяных насосов либо водоворотов.

Аэро-гидропоника позиционируется как альтернатива аэропонике, т.к. реализовать последнюю в домашних условиях сложно. Аэропонные  разрабатывали в Израиле и Калифорнийском Университете в Дэвисе с в 1970-1980гг. Однако США и Израиль воспользовались советскими данными, в то время в СССР вышло две книги: в 1964г «Аэропоника в теплицах» и в 1969г «Опыт по аэропонике в школе». В странах, где коммерческая гидропоника достаточно развита, все больше и больше компаний применяют аэро-гидропонные технологии, в качестве альтернативы как классическому земледелию, так и гидропонному выращиванию.

Аэро-гидропонные методы на практике оказались коммерчески успешными для выращивания рассады, производства семенного картофеля, томата, кулинарной зелени и салатов. Аэропоника не наносит ущерба окружающей среде, потому что является замкнутой системой циркуляции. Сегодня большинство коммерческих предприятий переходят на аэро-гидропонные системы, чтобы не загрязнять окружающую среду излишними отходами производства. Кроме того, постоянная циркуляция дает возможность использовать один и тот же рабочий раствор в течении всего цикла выращивания, т.к. система обеспечивает отличную аэрацию раствора и удаляет нежелательные газы из корневой зоны.

Преимущество аэро-гидропоники в том, что растения получают 100% доступного кислорода и углекислого газа в корневой зоне, стеблях и листьях. Таким образом обеспечивается быстрое укоренение и ускоренный рост биомассы: исследования NASA доказали, что растения выращенные на аэро-гидропонике имеют на 20% больше биомассы, чем растения на гидропонике. NASA также пришли к выводу, что растениям на аэро-гидропонике требуется на четверть меньше питательного раствора, и что в аэро-гидропонных системах расходуется на 35% меньше воды, чем гидропонике.

Кроме лабораторных систем аэро-гидропоники, мы тестируем и небольшие установки для домашнего применения. В наших аэропонных установках используются воздушные насосы, нагнетающие воду и распыляющие ее через форсунки, водяные насосы, а также водоворотные распылители Vortex.  Устроена аэро-гидропоника очень просто: система распыляет раствор в корневой зоне растений, пространство наполняет влажный воздух, насыщенный водяными парами. Этот метод работает даже когда температура питательного раствора превышает 30°С, поэтому аэро-гидропоника популярна в странах с жарким климатом.

История метода

Этот метод является одним из более современных методов гидропоники. Многие ошибочно называют данный метод «аэропоникой», но он не является таковым. Метод разрабатывался параллельно в Израиле и в Калифорнийском университете в Дэвисе с конца 1970-х до середины 1980 х годов. Он вытесняет более традиционные методы, особенно в странах, где коммерческая гидропоника только вступила в свои права. Как и замкнутые системы циркуляции, они не наносят ущерба окружающей среде. На круп­номасштабных предприятиях, загрязняющих окружающую среду, они приходят на смену распространенной сегодня технологии, при которой излишки отправляются в отходы. Помимо этого, благодаря динамичной циркуляции воды они помогают удалять нежелательные газы из питательного раствора. Можно содержать растение месяцами без токсичных накоплений в корневой зоне.

Воздушные насосы

Они обычно приводят в движение малогабаритные системы, и их про­дают в хозяйственных магазинах. Существует уйма способов подачи воды посредством воздуха. В начале 1980-ых годов Ларри Брук изобрел приспособление, которое можно приладить к любому типу контейнера. Хитроумная Y образная деталь позволяет подавать воздух к нижней части трубы. Когда нижняя часть трубы погружена в воду, то воздух, поданный ниже уровня воды, образуя пузырьки, выталкивает воду из трубы вверх. И тогда вам нужно только кольцо с отверстиями внизу, чтобы лучше распро­странять питательный раствор. Вот как скомпоновано устройство: ведерко, дно которого напоминает дуршлаг, наполнено керамзитовыми окатышами, служащими физической опорой растениям. Ведерко помещается в другое большее ведро-резервуар. Маломощный воздушный насос, вроде тех, что используются в аквариумах, постоянно оксигенирует воду через напорную колонну. Сбоку прозрачная пластмассовая трубка позволяет видеть уровень питательного раствора. Она подключена ко дну системы через прокладку и заершенный угольник. Питательный раствор под­нимается к верхушке колонны и равномерно орошает горшок через кольцо. Затем раствор самотеком стекает по корням в нижнее ведро.

Оксигенация, по максимуму! Поднимаясь по напорной колонне, вода смешивается с пузырьками воздуха. Часть кислорода в пузырьках раство­ряется в воде, а еще больше растворяется, когда раствор падает из кольца на субстрат. И все же этого мало по сравнению с тем, что будет дальше; когда питательный раствор самотеком возвращается в резервуар, он циркулирует в виде пленки. Эта пленка движется, обволакивая поверхность керамзитовых окатышей, а не прямо опускается на дно! Она должна обойти множество окатышей, прежде чем попадет на дно. Так образуется огромная площадь соприкосновения между воздухом и водой, несравнимая ни с чем другим. Таким образом вода в нижнем горшке всегда хорошо оксигенирована. Когда растение растет, и корневой войлок проходит сквозь отверстие в днище внутреннего горшка в нижний горшок, то оно оказывается в идеальной среде.

Эти горшки превосходны для отдельно стоящих больших растений. В такой системе вы можете выращивать их годами. Они могут вырастать до весьма внушительных размеров. За ними легко присматривать и их можно приподнять на пару блоков для облегчения доступа. Это очень хорошие установки, но если они не подключены ко вторичному резервуару, то за ними нужен присмотр. В знойную погоду крупное растение расходует запас воды за 2-3 дня. Обнадеживает то, что горшки можно легко подключить друг к другу, а потом к центральному резервуару. Вы можете даже циркулировать питательный раствор между горшками и обратно в основной бак. Это обеспечивает однородность питательного раствора во всех горшках с точки зрения рН и электропроводи­мости. Затем вы сможете обслуживать все горшки из основного бака. Вы не расходуете лишнюю энергию.

Эту систему часто критикуют за то, что в ней нет доступа к питательному раствору. Вообще-то это не проблема. Можно измерять рН и электропрово­димость в уровнемере. Достаточно слегка наклонить верхушку и наполнить стаканчик. (Первый стакан лучше вылить обратно в систему, чтобы тести­ровать не воду в напорной колонне, а воду в баке.) Отлейте еще стаканчик и протестируйте его содержимое. Если вы можете осторожно приподнять систему, хотя бы на один кирпич, то сможете полностью опорожнить всю систему наклоном уровнемера. Снова заправить систему можно сверху, орошая субстрат как почву.

Системы практически не имеет недостатков и пользуются высокой популярностью.

Водяной насос

В аэро-гидропонных системах большего масштаба применяются во­дяные насосы, циркулирующие воду по системе. Эти модульные системы, размерами от менее 1 квадратного метра до парниковых габаритов — 25 х 8 метров. Они устроены просто: белые (что важно для отражения тепла) пластиковые трубы квадратного сечения сверлят для установки «рассадных чашек» или сетчатых горшков. Сетчатые горшки напоминают по форме классические садовые горшки, их стенки и дно не сплошные, а состоят из пластиковых полос, позволяющих корням свободно через них прорастать. Они также позволяют воде беспрепятственно циркулировать.

В этих горшках горсть керамзитовых окатышей или аналогичного хорошо дренирующего субстрата обеспечивает физическую опору для растений. Белая труба или рассадная камера (короб) снабжена крышкой на каждом конце. Это герметичная камера, в которой можно поддерживать определенный уровень воды. В днище на одном конце камеры имеется отверстие. Обычная груба из ПВХ, проходя через прокладку, позволяет вам регулировать уровень раствора в камере. Обычно размеры камеры 12 х12 см; длина от 1 до 4 метров в зависимости от системы. Между камерами или иногда внутри них пластиковый шланг доставляет питательный раствор. Если магистральная труба находится вне камеры, то вторичные трубки подводят раствор в корневую зону по той же конструкции, что и в капельном орошении. Однако на этом сходство и заканчивается. Эти два метода совершенно несравнимы. В аэро-гидропонике насос-нагнетатель в конце вторичного трубопровода доставляет не каплю, а мощную струю водяной пыли. Другое принципиальное различие в том, что каждое растение не имеет своего распылителя. Распылители расположены вдоль всей камеры по одному на каждые 3-4 растения для обеспечения свежего питательного раствора по всему желобу. Роль этих распылителей заключается скорее в оксигенации и переносе питательного раствора, чем в орошении. Раствор становится сверхоксигенированным, когда проходит сквозь воздух в распыленном виде (отсюда и название – аэро-гидропоника). Камеры подключены к возвратной магистрали (очередной ПВХ-трубе), которая несет раствор обратно в бак. Насос погружен в бак, где он прогоняет раствор сквозь фильтр. В теплице камеры уложены на блоки, а бак зарыт в землю. В помещении камеры подняты на опоры, а бак помещается под ними для экономии места. Насосы работают весь день, но могут быть отключены на некоторое время ночью для экономии электроэнергии. Если вы начинаете работу, когда растения имеют маленькие корни или черенки не имеют корней, вы поднимаете уровнемер, пока не покроете 2 см на дне чашки. По мере роста корневого войлока, понижайте уровень воды, пока он не упадет полностью, или вообще уберите, если погода жаркая.

Есть и другие аэро-гидропонные системы. Аэро-гидропоника может осуществляться в отдельных горшках, которые все подключены к одному и тому же резервуару общими питающими и возвратными магистралями. Пока вода распыляется из нагнетателя и проходит сквозь воздух с целью оксигенации это аэро-гидропоника. В помещении этот метод зачастую используется для укоренения черенков. В этом случае пласт­массовый ящик с отверстиями в крышке вмещает сетчатые чашки. Внутри ящика насос и тонкие трубы со множеством форсунок-нагнетателей создают распыление, которое заполняет пространство между водой и крышкой ящика. Конечно же, черенки с удовольствием пускают корки в таких условиях!

Водоворот (Vortex)

Это хитроумное приспособление, изобретенное Хиллелем Соффером, является в сущности вращающимся конусом со специальными бороздками как внутри конуса, так и снаружи для распространения воды с помощью вертушки. Его можно найти и сейчас, но к сожалению, не с первоначальным мотором, который был снабжен реостатом для корректировки скорости вращения, а в коммерческом варианте с применением того же водоворота с двенадцати-вольтовым мотором, потребляющим очень мало электричества. Разработан­ный Хиллелем Соффером в качестве лабораторного оборудования, он все еще широко применяется во всем мире растениеводческими лабораториями. С точки зрения оксигенации прибор практически не имеет себе равных. Предел его применения — его размеры. Данный водоворот можно эксплуатировать в системах диаметром около 75 см, поэтому его часто применяют только для черенков. Однако его можно использовать и для цикла полного роста — от черенка до урожая. В этом случае вам понадобится защита — кожух вокруг вертушки во избежание наматывания корней на мотор.

Аэро-гидропоника — замечательная технология; она бесподобна, особенно в жаркую погоду. Это едва ли не единственный метод гидропоники, работаю­щий, когда температура питательного раствора превышает 30°С! Пространство между питательным веществом и верхним пространством камеры наполняет влажный воздух, насыщенный водяными парами. Когда воздух нагревается, испарение питательного раствора усиливает действие распылителя, пре­вращая это замкнутое пространство в лучшую среду для выживания корней в тепловой волне. Поэтому эта технология пользуется растущим спросом в Азии, где многие парники находятся в жарком климате. Такие системы обеспечивают уровень насыщения кислорода в корневой зоне и соответственно почти ма­гическую скорость роста. В камерах можно постоянно поддерживать определенный уровень воды — это хорошая мера предосторожности на случай отказа насоса. Если насос вышел из строя, то в зависимости от размера насаждений и температуры в поме­щении, растения смогут выживать от 24 часов до 2-3 суток. Этого времени вполне достаточно для принятия мер и устранения неисправности. После пуска в эксплуатацию эти системы не образуют или почти не образуют от­ходов. Чашки и окатыши можно повторно использовать до бесконечности: не нужно избавляться от громоздкого субстрата. Систему относительно легко чистить или дезинфицировать между урожаями.

Недостаток системы — её дороговизна при покупке и эксплуатации. Она требует более мощного насоса, чем прочие гидропонные технологии тех же размеров. В парниковой промышленности они применяются главным образом для выращивания культур с высокой добавленной стоимостью или быстрорастущих культур, например, салатов и лекарственных растений, урожай которых может быть снят несколько раз в год. Система также исполь­зуется торговцами растений, которые специализируются на коллекционных растениях для распространения; либо для поддержания жизни, или для того, чтобы заставить упрямое растение зацвести. При малых габаритах до 10 квадратных метров энергопотребление не вызывает затруднений, но проблемы начинаются при промышленных масштабах. Малые системы дороги еще из-за трудоемкой сборки.

Если вам нужно выращивать растения всего на 1 квадратном метре, рынок может предложить вам множество вариантов. Для таких габаритов вы можете найти NFT или систему периодического затопления по весьма привлекательной цене. Только старый добрый воздушный аэро-гидропонный горшок может конкурировать по цене среди установок с такой полезной площадью. При больших габаритах выбор ограничен. Не терзайтесь сомнениями при покупке аэро-гидропонной системы. Дополнительный урожай быстро окупит ваши расходы. Вы также можете построить свою установку из деталей, купленных в магазинах для садоводов по разумной цене, и можете найти подробные чертежи систем на вебсайтах производителей, которые весьма точны для того, чтобы вы могли их воспроизвести. В конечном счете выбор между доморощенной или покупной системой зависит от того, во сколько вы оцениваете свое время.

Поделиться:

Поделиться в facebook
Поделиться в vk
Поделиться в telegram
Поделиться в twitter
Поделиться в email